

1ZHP35AY27CH01Z4

◆Outline: 3.5*3.5*2.22mm

◆High efficiency

◆Good thermal dissipation & optical uniformity

Table of Contents:

-eatures	1
Product Code	2
Typical Product Characteristics	2
Maximum Rating	3
Wavelength Binning	
Intensity binning	4
Forward Voltage Binning	
Relative Spectral Power Distribution	5
Electronic-Optical Characteristics	5
Typical spatial distribution	5
Thermal Design for De-rating	6
Dimensions	7
Suggest Stencil Pattern	7
Packing	8
Reflow Profile	10
Precautions	11
Test items and results of reliability	14

Features

- RoHS2.0 and REACH-compliant
- MSL2 qualified according to J-STD 020
- ESD 8KV (HBM: MIL-STD-883 Class 3B)

Applications

- Portable lighting
- Outdoor lighting
- > Indoor lighting
- Commercial lighting
- Industrial lighting
- Decorative lighting
- > Agricultural lighting

■ Product Code

1 - Z - HP35 - A - Y27C - H - 0 - 1 - Z - 4

① ② ③ ④ ⑤ ⑥ ⑦ 8 ⑨ ⑩

1	2	3	4	6
Process type	Catagony	Specification	Long Angle code	Dice wavelength
Process type	Category	Specification	Lens Angle code	& Luminous rank
1: Normal	Z: High Power	HP35: Ceramic	A: 120°	YXXX: Yellow light
process	LED	3535		

6	7	8	9	0
Support code	Zener & High CRI	Cap color code	Module & Lens code	Current code
H: HTCC	0: None Zener	1: Series No.	Z: Molding	4: 350mA

■ Typical Product Characteristics(Ta=25°C)

Lu	minous Flux (lm)	Dominant Wavelength	Forward Voltage (V) @350mA		Viewing
Group	Min.	Max.	(nm)	Min.	Max.	Angle
B24	45	50				
B25	50	55	585-595	1.8	2.4	130°
B26	55	60				

- 1. Forward voltage (V_F) ± 0.05 V ; Luminous flux (Φ v) $\pm 7\%$; Wavelength (λ d/ λ p) ± 1 nm ; Viewing angle($2\theta_{1/2}$) $\pm 10^{\circ}$
- 2. IS standard testing.

■ Maximum Rating (Ta: 25°C)

Characteristics	Symbol	Min.	Typical	Max.	Unit
DC Forward Current ¹	l _F			700	mA
Pulse Forward Current ²	I _{PF}			1000	mA
Reverse Voltage	V _R			5	V
Reverse Current	I _R			10	μΑ
Junction Temperature ³	Tj			150	°C
Storage Temperature Range	T _{stg}	-40	-	100	°C
Soldering Temperature	T _{sol}			250	°C

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. D=0.01s duty 1/10.
- 3. When drive on maximum current, Tj must be kept below 150°C

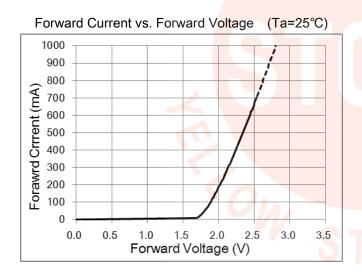
■ Dominant Wavelength Binning

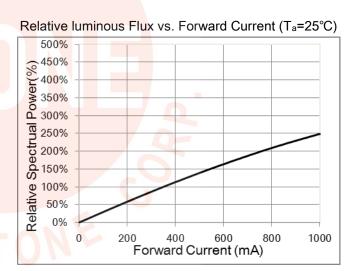
Bin code (350mA)	Min. λ _d (nm)	Max. λ _d (nm)
Y585	585	590
Y590	590	595

■ Intensity Binning

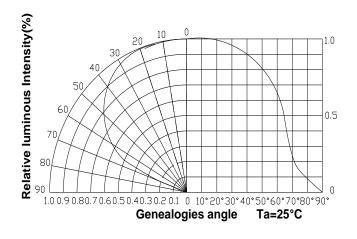

Bin code	Min. Φ _v	Max. Φ _v
(350mA)	(Lm)	(lm)
B24	45	50
B25	50	55
B26	55	60

■ Forward Voltage Binning

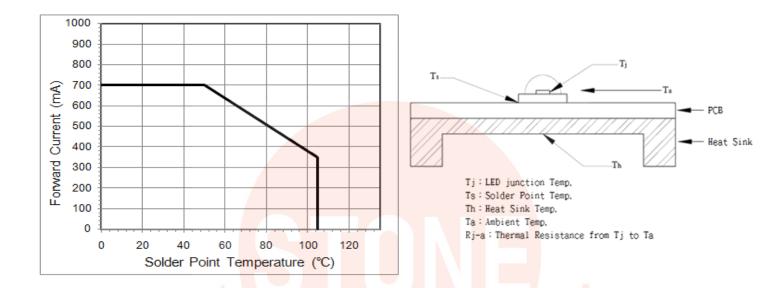

Bin code (350mA)	Min. V _F (V)	Max. V _F (V)
V1820	1.8	2.0
V2022	2.0	2.2
V2224	2.2	2.4

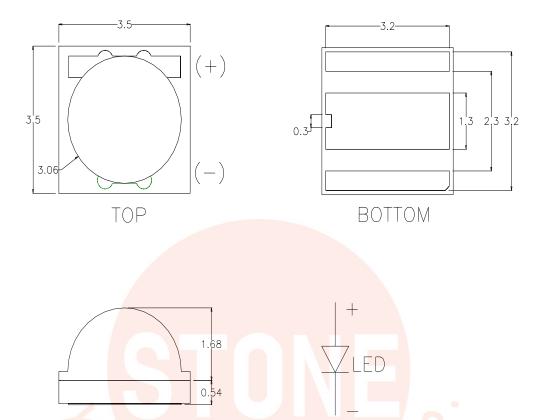


■ Relative spectral power distribution

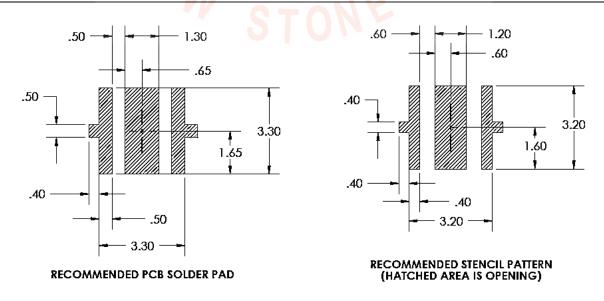


■ Electronic-Optical Characteristics


■ Typical Spatial Distribution

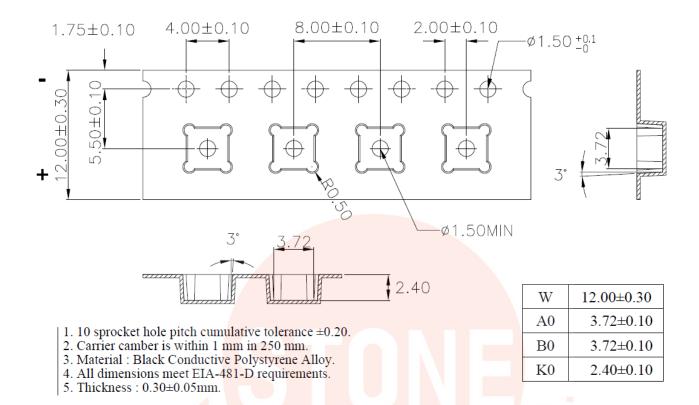

■ Thermal Design for De-rating

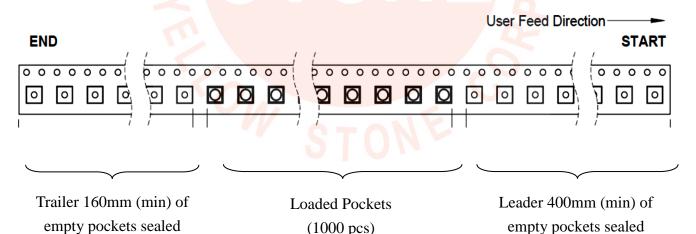
The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.

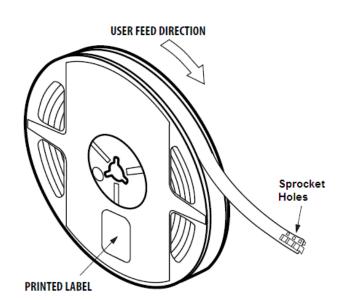


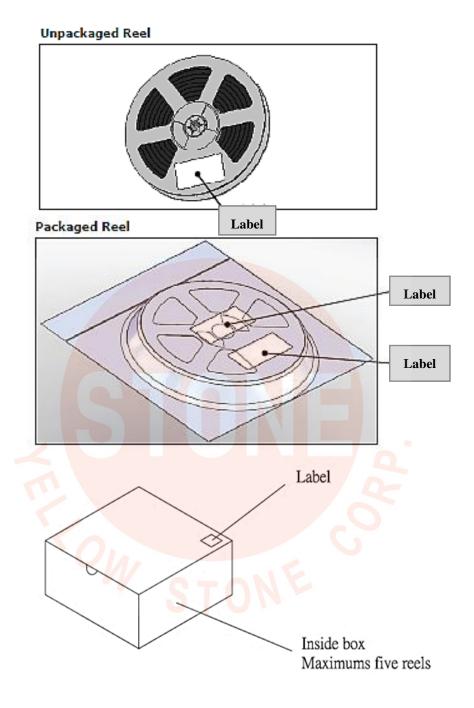
Dimensions

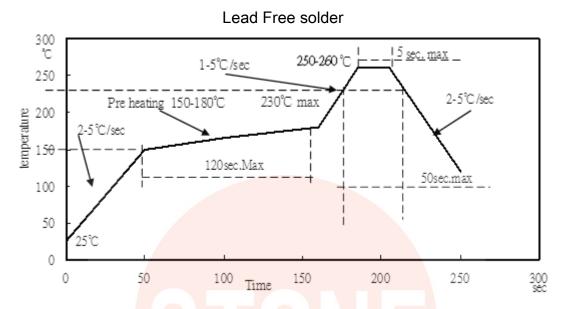
- § All dimensions are in millimeters.
- § Tolerance is ±0.13mm unless other specified.


■ Suggest Stencil Pattern (Recommendations for reference)




§ Suggest stencil t =0.12 mm


■ Packing

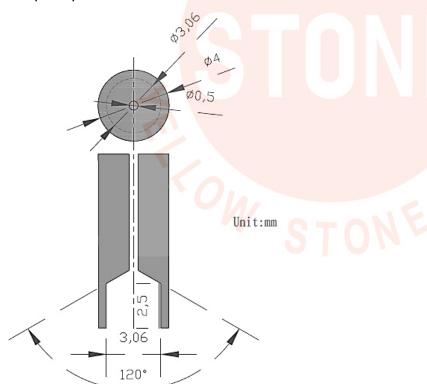


- Each reel (minimum number of pieces is 100 and maximum is 1000 for 120 degree product)
 is packed in a moisture-proof bag along with a packs of desiccant and a humidity indicator
 card.
- 2. A maximum of 5 moisture-proof bags are packed in an inner box (size: 260mm x 230mm x 100mm ±5mm).
- 3. A maximum of 4 inner boxes are put in an outer box (size: 480mm x 275mm x 215mm ±5mm).
- 4. Part No., Lot No., quantity should be indicated on the label of the moisture-proof bag and the cardboard box.

Reflow Profile

IR Reflow Soldering Profile

- 1. The recommended reflow temperature is 240°C(±5°C). The maximum soldering temperature should be limited to 250-260°C.
- 2. Do not stress the silicone resin while it is exposed to high temperature.
- 3. The reflow process should not exceed 2 times.

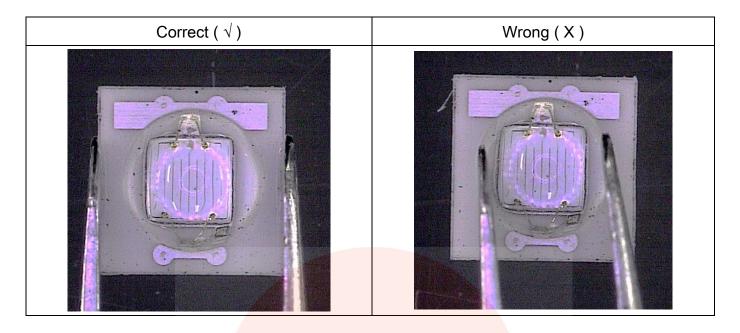


Precautions

- 1. Recommendation for using LEDs
 - 1.1 The lens of LEDs should not be exposed to dust or debris. Excessive dust and debris may cause a drastic decrease in the luminosity.
 - 1.2 Avoid mechanical stress on LED lens.
 - 1.3 Do not touch the LED lens surface. It would affect the optical performance of the LED due to the LED lens' damage.
 - 1.4 Pick & place tools are recommended for the remove of LEDs from the factory tape & reel packaging

2. Pick & place nozzle

The pickup tool was recommended and shown as below

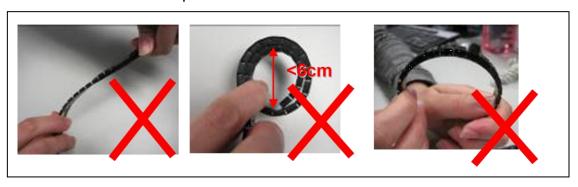


3. Lens handling

Please follow the guideline to pick LEDs.

- 3.1 Use tweezers to pick LEDs.
- 3.2 Do not touch the lens by using tweezers.
- 3.3 Do not touch lens with fingers.
- 3.4 Do not apply more than 4N (400gw) directly onto the lens.

4. Lens cleaning


In the case which a small amount of dirt and dust particles remain on the lens surface, a suitable cleaning solution can be applied.

- 4.1 Try a gentle wiping with dust-free cloth.
- 4.2 If needed, use dust-free cloth and isopropyl alcohol to gently clean the dirt from the lens surface.
- 4.3 Do not use other solvents as they may directly react with the LED assembly.
- 4.4 Do not use ultrasonic cleaning which will damage the LEDs.

5. Carrier tape handling

The following items are recommended when handling the carrier tape of LEDs.

- 5.1 Do not twist the carrier tape.
- 5.2 The inward bending diameter should not be smaller than 6cm for each carrier tape.
- 5.3 Do not bend the tape outward.

6. Storage

6.1 The moisture-proof bag is sealed:

The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.

6.2 The moisture-proof bag is opened:

The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the humidity indicator card shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 24hrs. To seal the remainder LEDs return to the moisture-proof bag, it's recommended to be with workable desiccants.

■ Test Items and Results of Reliability

Test Item	Test Conditions	Duration/ Cycle	Number of Damage	Reference
Thermal Shock	-40°C 30min ↑↓5min 125°C 30min	1000 cycles	0/77	AEC-Q101
High Temperature Storage	T _a =100°C	1000 hrs	0/22	EIAJ ED-4701 200 201
Humidity Heat Storage	T _a =85°C RH=85%	1000 hrs	0/22	EIAJ ED-4701 100 103
Low Temperature Storage	T _a =-40°C	1000 hrs	0/22	EIAJ ED-4701 200 202
Life Test	T _a =25°C	1000 hrs	0/22	
High Humidity Heat Operation	85°C RH=85% If=350mA	1000 hrs	0/22	
High Temperature Operation	T _a =85°C If=350mA	1000 hrs	0/22	
ESD(HBM)	2KV at 1.5kΩ;100pf	3 Times	0/22	MIL-STD-883

Failure Criteria					
Criteria for Ju			· Judgment		
Item	Symbol	Condition	Min	Max	
Forward Voltage	V_{F}	If=350mA	-	USL ¹ ×1.1	
Reverse Current	I _R	V _R =5V	-	100μΑ	
Luminous Intensity	I _v	If=350mA	LSL ² ×0.7	-	

Notes:

USL: Upper specification level
 LSL: Lower specification level