
Features:

- Chip material: Gap/Gap (Red)
 and GaAsP/GaP (Yellow)
- 2. Emitted color : Red and Yellow
- 3. Lens Appearance : Red Diffused and Yellow Diffused
- 4. Designed for ease in circuit board assembly.
- 5. Black case enhance contrast ratio.
- 6. Solid state light source.
- 7. Reliable and rugged.
- 8. 3mm diameter package
- 9. This product don't contained restriction substance, compliance ROHS standard.

Applications:

- 1. TV set
- 2. Monitor
- 3. Telephone
- 4. Computer
- 5. Circuit board

Package dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25mm (0.01") unless otherwise specified.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

■ Absolute Maximum Ratings(Ta=25°C)

Parameter	Symbol	Red	Yellow	Unit	
Power Dissipation	Pd	80	80	mW	
Forward Current	I _F 30		30	mA	
Peak Forward Current*1	I _{FP}	150	150	mA	
Reverse Voltage	V_R	5		V	
Operating Temperature	Topr	-40℃~			
Storage Temperature	Tstg	-40℃~-			
Soldering Temperature	Tsol	260℃(for 5			

^{*1}Condition for I_{FP} is pulse of 1/10 duty and 0.1msec width.

Electrical and optical characteristics(Ta=25℃)

Parameter	Symbol	Condition	Color	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F =20mA	Red Yellow	1.8 1.8	-	2.4 2.4	V
Luminous Intensity	lv	I _F =20mA	Red Yellow	1 20	-	10 80	mcd
Reverse Current	I _R	V _R =5V	Red Yellow	-	-	10	μА
Peak Wave Length	λр	I _F =20mA	Red Yellow	-	700 590	-	nm
Dominant Wave Length	λd	I _F =20mA	Red Yellow	630 585	-	650 595	nm
Spectral Line Half-width	Δλ	I _F =20mA	Red Yellow	-	35 30	-	nm
Viewing Angle	2θ _{1/2}	I _F =20mA	Red Yellow	-	50 40	-	deg

Typical Electro-Optical Characteristics curves

Η

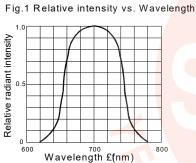


Fig.3 Forward current vs. Forward voltage

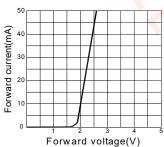


Fig.5 Relative luminous intensity

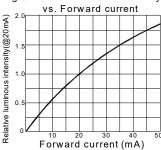


Fig.2 Forward current derating curve

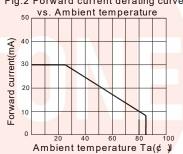


Fig.4 Relative luminous intensity

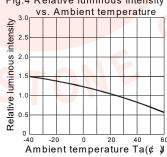


Fig.6 Radiation diagram

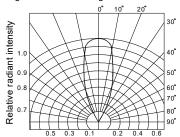


Fig.1 Relative intensity vs. Wavelength

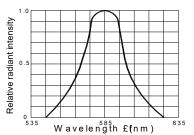


Fig.3 Forward current vs. Forward voltage

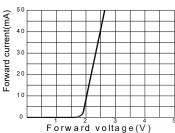


Fig.5 Relative luminous intensity

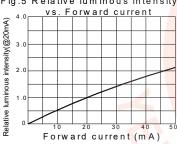


Fig.2 Forward current derating curve Ambient temperature

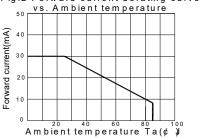


Fig.4 Relative luminous intensity

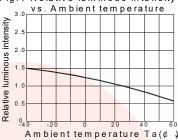
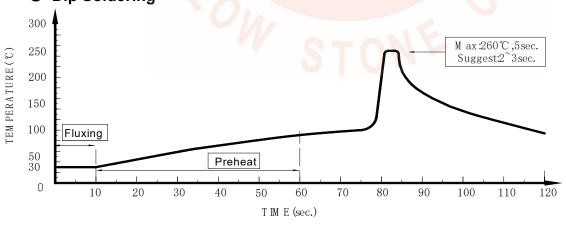
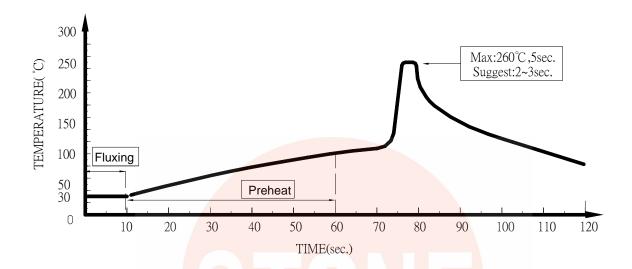
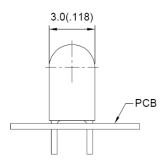



Fig.6 Radiation diagram


Dip Soldering

- 1. Please avoid any external stress applied to the lead-frames and epoxy while the LEDs are at high temperature, especially during soldering
- 2. DIP soldering and hand soldering should not be done more than one time.
- 3. After soldering, avoid the epoxy lens from mechanical shock or vibration until the LEDs are back to room temerature.
- 4. Avoid rapid cooling during temperature ramp-down process
- 5. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

Dip Soldering



- Please avoid any external stress applied to the lead-frames and epoxy while the LEDs are at high temperature, especially during soldering
- 2. DIP soldering and hand soldering should not be done more than one time.
- 3. After soldering, avoid the epoxy lens from mechanical shock or vibration until the LEDs are back to room temerature.
- 4. Avoid rapid cooling during temperature ramp-down process
- 5. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

● IRON Soldering

A: Max: 350°C Within 3 sec. One time only.

B: For 3mm LED without flange, if the LED epoxy lays flat on the PCB, the welding condition is 350°C within 2 seconds, one time only.

