

♦Features

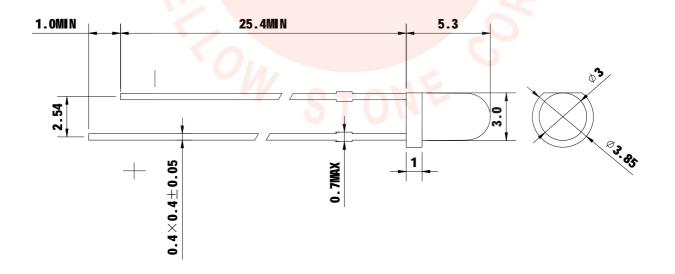
I 3mm Rounded LED Lamps

I Emitting Color: Blue

I Lens Color: White Diffuse

I Material: InGaN

I Low power consumption


I Excellent product quality and reliability

I Lead-free device

◆Applications

- I Electronic signs and signals
- I Bright ambient lighting conditions
- I Backlight
- I General purpose indicators

♦ Package Dimensions

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.25 unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.
- 5. The design and working Current for Led is not less than 2mA.

◆ Absolute Maximum Ratings at TA=25°C

Parameter	Symbol	Value	Unit
Power Dissipation	PD	120 mW	
Forward Current	IF	30 mA	
Peak Forward Current*1	IFP	100 mA	
Reverse Voltage	VR	5 V	
Operating Temperature	Topr	-40°C To +85°C ▲	
Storage Temperature	Tstg	-40°C To +85°C	
Soldering Temperature*2	Tsol	260°C For 5 Seconds Δ	

Notes:

◆ Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Min.	Тур.	Max	Unit	Test Conditions
Forward Voltage	VF	2.8	_	3.4	V	IF=20mA
Reverse Current	IR	l		10	μA	VR=5V
Dominant Wavelength	λd	465	101	475	nm	IF=20mA
Peak Wavelength	λP		465		nm	IF=20mA
Spectral line Half-width	Δλ		21		nm	IF=20mA
Luminous Intensity	IV	650	1200	2190	mcd	IF=20mA
Power Angle	2 0 1/2		45	_	Deg.	IF=20mA

Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity, or dominant wavelength), the typical accuracy of the sorting process is as follows:

- 1.Dominant Wavelength:+/-1nm
- 2.Chromatic Coordinates:+/-0.01
- 3. Luminous Intensity: +/-15%
- 4. Forward Voltage: +/-0.1V

^{*1:} Pulse width≤0.1ms, Duty cycle≤1/10

^{*2:∆}At the position of 3mm below package base.

^{*3: ▲} Plese refer to the curve of forward current vs.temperature

VF Rank

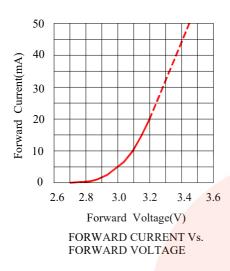
	VF(V)		Condition	
Rank	Min	Max	Condition	
F1F2	2.8	3.0		
G1G2	3.0	3.2	IF=20mA	
H1H2	3.2	3.4		

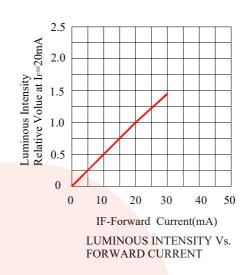
Tolerance:±0.1V

λD Rank

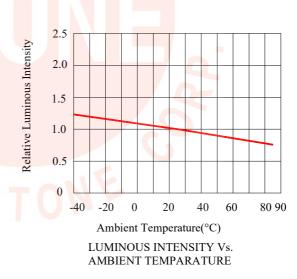
	λD			
Rank	Min	Max	Condition	
B1	465	470	IE-20mΛ	
B2	470	475	IF=20mA	

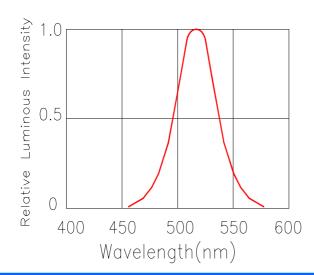
Tolerance:±1nm


IV Rank


IV Rank				
	IV(mcd)			
Rank	Min	Max	Condition	
L	650	975	IF=20mA	
М	975	1462	IF=ZUIIA	
N	1462	2190		


Tolerance:±15%




◆ Typical Electrical/Optical Characteristics Curves

♦Reliability Test Items and Conditions

Test Classification	Test ltim	Test Conditions	Test Duration	Sample Size	AC/RE
Life Test	Room Temperature DC Operating Life Test	Ta=25°C±5°C, If=20mA	1000hrs	22pcs	0/1
	Thermal Shock Test	100°C±5°C 15min ↓↑ -40°C±5°C 15min	20 cycles	22pcs	0/1
	Temperature Cyle Test	100°C±5°C 30min ↓↑5min -40°C±5°C 30min	20 cycles	22pcs	0/1
Environment Test	High Temperature & High Humidity Test	85°C±5°C /85% RH	1000hrs	22pcs	0/1
	High Temperature Storage	Ta=100°C±5°C	1000hrs	22pcs	0/1
	Low temperature Storage	Ta=-40°C±5°C	1000hrs	22pcs	0/1
Mechanical Test	Resistance to Soldering Heat	Temp=260°C ±5°C T=5s max	2 times	22pcs	0/1

♦ Criteria for Judging the Damage

Item	Cymbol	condition	Criteria for Judgement		
пеш	Symbol	condition	MIN.	MAX.	
Forward Voltage	VF (V)	IF=20mA		U.S.L*1.1	
Reverse Current	IR (uA)	VR=5V		10uA	
Luminous Intensity	IV (mcd)	IF=20mA	L.S.L*0.5		

[Note] 1.USL: Upper Specification Level 2.LSL: Lower Specification Level

♦ CAUTIONS:

1.Lead Forming & Assembly

- Lead forming or bending must be done before soldering, at normal temperature.
- During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens.
- Do not use the base of the lead frame as a fulcrum during lead forming.
- Avoid bending the leads at the same point more than once.
- During assembly on PCB, use minimum clinch force possible to avoid excessive mechanicalstress.

2.LED Mounting Method

- •The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement.Lead-forming may be required to insure the lead pitch matches the hols pitch.
- When soldering wire to the LED. Use individual heat-shrink tubing to insulate the exposed leads to prevent accidental coontact short-circuit.
- •Use stand-offs or spacers to securely position the LED above the PCB.

3. Soldering

• When soldering, the soldering iron needs to be at least 3mm away from the epoxy edge. After soldering, allow at least 3 minutes for LEDs to cool back to normal temperature. DO not apply any pressure to the epoxy encapsulation or the lead frame during the soldering process.

• When using soldering iron .please solder once for less than 5 seconds at a maximum Temperature of 300°C. When soldering a row of LED on a PCB. Please do not solder both

Leads of a LED in sequence. (Solder all the positive lead first .then all the negative leads).

- Do not dip the epoxy encapsulation part of LED into any soldering paste liquid.
- After soldering .do not adjust the location of the LED anymore .

• When attaching electronic parts to a PCB with LEDs .the curing time for the whole PCB

Should be less than 60 seconds .at less than a temperature of 120°C.

4. Cleaning:

• Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary.

5.Storage

- The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity.
- It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient.

6.ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Suggestions to prevent of ESD damage.

- All devices, equipment, and machinery must be properly grounded.
- Use a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- Maintain a humidity level of 50% or higher in production areas.
- Use anti-static packaging for transportation and storage.

7. Recommended Usage Guidelines

- Please only use 20mA(Lamp LED) of forward current to drive LEDs whether one LED or multiple LEDs are being used.
- Sudden surge could damage the LED interior connections.please design circuit with care to no sudden voltage surge or current surge will show when turning the circuit on or off.