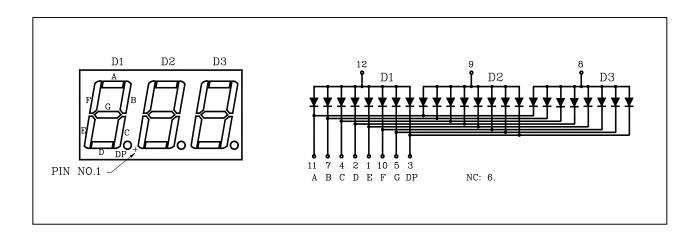


Features :

- 1. 0.56 inch (14.20mm) Digit Height.
- 2. Continuous uniform segments.
- 3. Low power requirement.
- 4. Excellent characters appearance.
- 5. Solid state reliability.
- 6. Categorized for luminous intensity.
- 7. Multiplex drive common anode.

Description :


- 1. The BT-M51BJRD is a 14.20mm(0.56") high three digit seven segments display.
- 2. This product use super blue chips, which are made from GaN on SiC substrate.
- This product have a black face and white segments.
- 4. This product doesn't contain restriction substance, comply ROHS standard.

Notes:

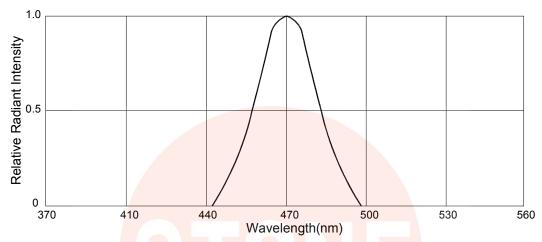
- 1. All dimensions are in millimeters(inches).
- 2. Tolerance is ±0.25mm(.01")unless otherwise specified.
- 3. Specifications are subject to change without notice.

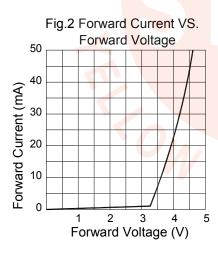
Internal Circuit Diagram :

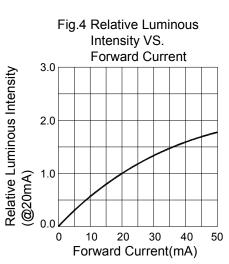
● Absolute Maximum Ratings(Ta=25°C)

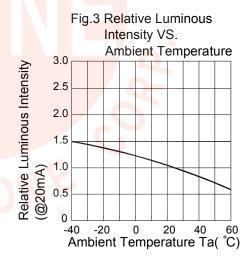
Parameter	Symbol	Rating	Unit
Power Dissipation Per Segment	Pd	120	mW
Forward Current Per Segment	I _F	30	mA
Peak Forward Current Per Segment	I _{FP} (Duty 1/10, 1KHZ)	150	mA
Reverse Voltage Per Segment	V_R	5	V
Operating Temperature	Topr	-40°C~80°C	-
Storage Temperature	Tstg	-40°C~85°C	-
Soldering Temperature (1/16" From Body)	Tsol	260℃ For 5 Seconds	-

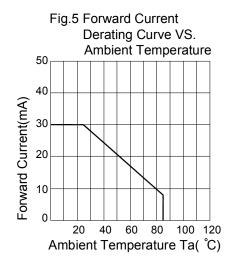
● Electrical And Optical Characteristics(Ta=25°C)

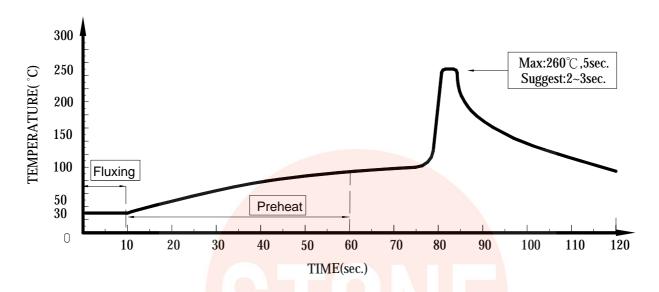

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage Per Segment	Vf	I _F =10mA	-	3.5	4.0	V
Luminous Intensity Per Segment	lv	I _F =10mA	-	4.0	-	mcd
Reverse Current Per Segment	I _R	V _R =5V	-	-	100	μА
Peak Wave Length	λр	I _F =10mA	-	470	-	nm
Dominant Wave Length	λd	I _F =10mA	460	-	480	nm
Spectral Line Half-width	Δλ	I _F =10mA	-	26	-	nm




Typical Electro-Optical Characteristics Curves


(25°C Ambient Temperature Unless Otherwise Noted)


Fig.1 Relative Radiant Intensity VS. Wavelength



Dip Soldering

- 1. Please avoid any external stress applied to the lead-frames and epoxy while the LEDs are at high temperature, especially during soldering
- 2. DIP soldering and hand soldering should not be done more than one time.
- 3. After soldering, avoid the epoxy lens from mechanical shock or vibration until the LEDs are back to room temperature.
- 4. Avoid rapid cooling during temperature ramp-down process
- 5. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

IRON Soldering

350 $^{\circ}$ Within 3 sec., One time only.